
Object Oriented
Programming

with Perl

Yet Another Perl Conference

Amsterdam, August 2 − 4, 2001

© 2001 Squirrel Consultancy. All rights reserved.

Object Oriented
Programming
with Perl

Preface

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 1

Object Oriented Programming with Perl

Object Oriented
Programming with Perl

Johan Vromans

Squirrel Consultancy

<JVromans@Squirrel.NL>

Object Oriented Programming with Perl / Johan Vromans 1

Object Oriented Programming with Perl

This document contains selected sheets from the training “Object
Oriented Programming with Perl”.

For the complete materials, please contact Squirrel Consultancy,
<info@squirrel.nl>.

Object Oriented Programming with Perl / Johan Vromans 2

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 2

Object Oriented
Programming
with Perl

Part I

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 3

Object Oriented Programming

It’s all about objects, that are instances of classes that supply methods,
either directly or via inheritance from base classes. Derived classes can
use polymorphism to tailor inherited methods to their specific needs,
and abstraction keeps implementation details out of the way.

Despite popular belief, object oriented programming is not something
new. The idea of programming in terms of objects goes back to the
mid-1960s, when Ole Dahl and Kirsten Nygaart in Norway created the
language Simula for simulating physical processes.

Object Oriented Programming with Perl / Johan Vromans 4

Classes

Classes are the heart of the objects system.

Name space with data and routines (behavior).

Usually related to one specific kind of problem.

Object Oriented Programming with Perl / Johan Vromans 5

Objects

An object is a data structure that belongs to (is an instance of) a class.
Every object knows which class it belongs to.

Objects’ behavior is supplied by the class.

The object data are called attributes.

Object Oriented Programming with Perl / Johan Vromans 6

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 4

Methods

The class defines methods: behaviors that apply to the class and its
instances.

If a method ‘does something’ related to the object data, it is called an
instance method .

Otherwise, it is called a class method .

A special kind of method are constructor methods: these methods
create new objects.

Object Oriented Programming with Perl / Johan Vromans 7

Inheritance

A class may inherit methods
from other classes.
If class B inherits methods from
class A, then class A is a parent
class (base class, superclass,
generalization) of class B. Class
B is derived from (is a subclass
of, a specialization of) class A.
Class B has an is-a relation with
class A.

B

methods

attributes

A

methods

attributes

Object Oriented Programming with Perl / Johan Vromans 8

Polymorphism

Objects can use inheritance for methods, but they can also supply
their own specific implementation by overriding methods from the
base class. They can even use the base class methods when rolling
their own.

Object Oriented Programming with Perl / Johan Vromans 9

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 5

Encapsulation

Application programs do not need to know what’s inside the object.

The object encapsulates its inner guts.

All access to an object should go through methods alone.

Methods that exclusively set and get attribute values are called
attribute accessors.

Object Oriented Programming with Perl / Johan Vromans 10

Abstraction

Since all access goes through methods, the underlying details are
abstracted out.

The interface is what is important to the user of the objects, not how it
is implemented.

Object Oriented Programming with Perl / Johan Vromans 11

Object Oriented Programming

Why?

Object Oriented Programming with Perl / Johan Vromans 12

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 6

Object Oriented
Programming
with Perl

Part II

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 7

Classes

A class is simply a package.

It provides the name space to hold data and subroutines.

Often, a module is used to hold one or more classes.

Object Oriented Programming with Perl / Johan Vromans 14

Objects

An object is simply a referent.

A reference pointing to the referent is used to represent the object.

The association between a package (class) and the referent (object) is
made using Perl’s builtin bless function.

Usually, the class defines one or more methods that return a new
object: constructor methods.

Often, one of the constructor methods is called new so you can say:

$myobj = new MyClass::;

Object Oriented Programming with Perl / Johan Vromans 15

Methods

A method is simply a subroutine.

Method invocation is a subroutine call with a twist.

Two ways to invoke a method:

• as a dereference

• using indirect object syntax

Object Oriented Programming with Perl / Johan Vromans 16

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 8

Method Invocation as a Dereference

invocant->method(args, ...)

The invocant can be the name of the class (for class methods), or an
instance of the class.

The subroutine gets the invocant as its first argument, before the
supplied arguments.

Class names are best specified with two trailing colons, e.g.
MyClass::. This prevents them from being taken for the name of a
subroutine.

Object Oriented Programming with Perl / Johan Vromans 17

Method Invocation using Indirect Object Syntax

method invocant (args, ...)
method invocant args, ...

The subroutine gets the invocant as its first argument, before the
supplied arguments.

The indirect object syntax suffers from syntactic ambiguity.

Object Oriented Programming with Perl / Johan Vromans 18

Method Invocation using Subroutine Call

method(invocant,args,...)

The method name must be fully qualified, since object oriented
packages do not normally export subroutines.

We’ll see later why this way of invocation is a bad idea.

Object Oriented Programming with Perl / Johan Vromans 19

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 9

Inheritance

When a method is invoked on an invocant, the invocant may either
provide the method itself (by defining the appropriate subroutine), or
inherit the method from one of its base classes.

Perl decides at invocation time which subroutine to call.

Therefore, method invocation is slightly slower than straight
subroutine calls.

Also, no prototype checking is possible.

Object Oriented Programming with Perl / Johan Vromans 20

Inheritance

A class can register its base classes by storing their names in a package
array @ISA.

For example:

package Vowel;
use Letter;
our @ISA = qw(Letter);

But it’s better (and easier) to use the base pragma:

package Vowel;
use base qw(Letter);

Object Oriented Programming with Perl / Johan Vromans 21

UNIVERSAL

A special pre-defined class UNIVERSAL is the ultimate ancestor from
which all classes implicitly derive.

It provides methods to query whether a class derives from some other
class, and if it can perform a certain method.

Methods can be added to class UNIVERSAL, but beware! Some other
class may not expect to find it.

Object Oriented Programming with Perl / Johan Vromans 22

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 10

Polymorphism

Derived classes can add, and override, any methods of the base
classes.

When a method is called, perl first looks in the class the object
belongs to.

If not found, it searches the class hierarchy.

Object Oriented Programming with Perl / Johan Vromans 23

Looking for Methods

When a method is called, perl first looks in the class the object
belongs to.

If not found, it runs a left-to-right, recursive, depth-first search on all
base classes.

If still not found, looks in class UNIVERSAL.

If still not found, the whole procedure is repeated but this time for a
subroutine named AUTOLOAD.

If no subroutine could be found, perl raises an exception.

Object Oriented Programming with Perl / Johan Vromans 24

Encapsulation

Perl provides several ways to hide private data from unwanted access.

Object Oriented Programming with Perl / Johan Vromans 25

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 11

Abstraction

Perl makes it possible to have all data access go through methods,
leaving only the abstracted interface to the user of the objects.

Perl does, however, not enforce this.

There are ways to make unwanted access hard, if not impossible.

Object Oriented Programming with Perl / Johan Vromans 26

Object Destruction

Perl uses reference counting to keep track of allocated objects.

When an object goes out of scope or otherwise ceases to exist, it will
be garbage collected – eventually.

If the object can perform a DESTROY method, this is called by Perl
when the object is logically removed from the object system.

If it cannot, no special action is taken.

Object Oriented Programming with Perl / Johan Vromans 27

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 12

Object Oriented
Programming
with Perl

Part III

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 13

HTML::Head example

Let’s set up a simple class that implements HTML heading objects, like
<h1>...</h1>, <h2>...</h2>, and so on.

What we need:

• a constructor to create a heading object,

• a way to specify the level and the text, and

• a method to publish the object, i.e., create HTML text from it.

Object Oriented Programming with Perl / Johan Vromans 29

HTML::Head example – The Class

A class is simply a package.

package HTML::Head;

use strict;

1;

Object Oriented Programming with Perl / Johan Vromans 30

HTML::Head example – The Constructor

A constructor is simply a method that returns a blessed reference.

A method is simply a subroutine that gets its invocant passed as its first
argument.

$obj = HTML::Head::->new;

sub new {
bless { };

}

The object is implemented using a hash.

Object Oriented Programming with Perl / Johan Vromans 31

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 14

HTML::Head example – The Attributes

Attributes are the data of the instance. They are stored in the hash.

HTML::Head has two attributes: the text and the header level .

$obj->set_level(2);

sub set_level {
my ($self,$level) = @_;
$self->{level} = $level;

}

$lvl = $obj->get_level;

sub get_level {
my $self = shift;
$self->{level};

}

Object Oriented Programming with Perl / Johan Vromans 32

HTML::Head example – The Attributes

For boolean attributes, it is conventional to use set_attr and is_attr .

$obj->set_bold(1); # on
$obj->set_bold(0); # off
if ($obj->is_bold) { ... }

Please supply a sensible default value:

$obj->set_bold; # on, not off!

Object Oriented Programming with Perl / Johan Vromans 33

HTML::Head example – The Constructor (revisited)

If the attributes are stored in a hash, it is convenient and easy to
initialize them at construction time:

$obj = HTML::Head::->new(level=>2, text=>"Heading");

sub new {
shift; # ignore invocant
bless { @_ };

}

This is much too simple, we need to do some integrity checking here.

Object Oriented Programming with Perl / Johan Vromans 34

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 15

HTML::Head example – Other Methods

The publish method produces an HTML string for the instance.

sub publish {
my $self = shift;
"<h" . $self->get_level . ">" .

$self->get_text .
"</h" . $self->get_level . ">";

}

Isn’t it a bit overdone to use get_level and get_text from within
the class?

Object Oriented Programming with Perl / Johan Vromans 35

HTML::Head example – Array implementation

Any referent may be used as the object implementation. Hashes are
nice, but there’s nothing wrong with a plain array.

Let’s change the internal implementation from hash to array.

The constructor:

sub new {
shift; # ignore invocant
my $obj = [];
my %init = @_;
$obj->[0] = delete $init{level};
$obj->[1] = delete $init{text};
bless $obj;

}

Object Oriented Programming with Perl / Johan Vromans 36

Constants

In situations like this, the constant pragma may be helpful.

use constant ATTR_LEVEL => 0;
use constant ATTR_TEXT => 1;

Object Oriented Programming with Perl / Johan Vromans 37

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 16

HTML::Head example – The ‘text’ attribute

A straightforward change: replace the ‘->{text}’ with
‘->[ATTR_TEXT]’.

$obj->set_text("Heading");

sub set_text {
my ($self, $text) = @_;
$self->[ATTR_TEXT] = $text;

}

$text = $obj->get_text;

sub get_text {
my $self = shift;
$self->[ATTR_TEXT];

}

Object Oriented Programming with Perl / Johan Vromans 38

HTML::Head example – Other Methods

The publish method:

sub publish {
my $self = shift;
"<h" . $self->get_level . ">" .

$self->get_text .
"</h" . $self->get_level . ">";

}

Because we used get_level and get_text, the other methods do
not need to change when the implementation changes.

In general, it is good practice that only the constructor and attribute
get/set methods know about the inner details.

Object Oriented Programming with Perl / Johan Vromans 39

Hash versus Array

Arrays are slightly faster, but hard to maintain.

When inheritance gets into play, it becomes even harder.

Hashes are slightly slower, but more flexible.

Perl provides the best of both worlds: the pseudo-hash.

Special pragma’s: fields and base.

Object Oriented Programming with Perl / Johan Vromans 40

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 17

HTML::Head example – Pseudo-Hash implementation

The fields pragma is used to define the fields that we’re going to
use.

package HTML::Head;

use strict;
use fields qw(level text);

Object Oriented Programming with Perl / Johan Vromans 41

HTML::Head example – The Constructor

The fields::new method creates a suitable object.

$obj = HTML::Head::->new;

sub new {
my $invocant = shift;
my HTML::Head $obj = fields::new($invocant);
my %init = @_;
$obj->{$_} = $init{$_} foreach keys %init;
$obj;

}

Illegal values for attribute names are now trapped at run time.

Object Oriented Programming with Perl / Johan Vromans 42

HTML::Head example – The Attributes

$obj->set_level(2);

sub set_level {
my HTML::Head $self = shift;
my $level = shift;
$self->{level} = $level;

}

$lvl = $obj->get_level;

sub get_level {
my HTML::Head $self = shift;
$self->{level};

}

Object Oriented Programming with Perl / Johan Vromans 43

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 18

HTML::Head example – Other Methods

Again, no changes for the other methods.

sub publish {
my $self = shift;
"<h" . $self->get_level . ">" .

$self->get_text .
"</h" . $self->get_level . ">";

}

Object Oriented Programming with Perl / Johan Vromans 44

Inheritance

As stated earlier, a class can either provide the method itself (by
defining the appropriate subroutine), or inherit the method from one
of its base classes.

For example, assume we have a base class HTML::Head, and two
derived classes, HTML::Head1 and HTML::Head2.

HTML::Head handles storing the text, while the derived classes
handle the publishing.

Object Oriented Programming with Perl / Johan Vromans 45

HTML::Head example with Derived Classes

package HTML::Head;
use strict;

sub new {
shift; # ignore invocant
bless { @_ };

}

sub get_text { ... }
sub set_text { ... }

package HTML::Head1;

use base qw(HTML::Head);

sub publish { "<h1>@{[shift->get_text]}</h1>" }

Object Oriented Programming with Perl / Johan Vromans 46

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 19

Inheritance and Constructors

The bless function blesses a reference in the current package. So it
will always become an instance of the class that declared the
constructor.

But what if the derived class inherits the constructor?

Objects created by the inherited constructor would end up being
instances of the base class, not of the derived class.

$h1 = HTML::Head1::->new;

This calls HTML::Head::new to create an HTML::Head object, and
will not produce an HTML::Head1 object.

Object Oriented Programming with Perl / Johan Vromans 47

Inheritance and Constructors (cont’d)

Remember, a method always gets its invocant as its first argument.

$h1 = HTML::Head1::->new;

This calls HTML::Head::new("HTML::Head1").

Object Oriented Programming with Perl / Johan Vromans 48

bless’ Second Argument

bless takes a second argument, the name of the class to bless the
object into.

We can use this to create an inheritable constructor.

sub new {
my $invocant = shift;
...
bless $obj, $invocant;

}

Object Oriented Programming with Perl / Johan Vromans 49

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 20

Instance Methods as Constructors

While we’re at it: there is no reason to restrict object construction to
classes.

my HTML::Head $h1 = HTML::Head::->new;
my HTML::Head $h2 = $h1->new;

ref returns the package name of an object.

sub new {
my $invocant = shift;
...
bless $obj, ref($invocant) || $invocant;

}

Object Oriented Programming with Perl / Johan Vromans 50

Factory Methods

Methods that create objects are called factory methods.

A constructor is a special case of factory method: one that creates a
new instance for its class.

To distinguish factory methods from constructors, give them a catchy
name, like create_... or make_... .

Object Oriented Programming with Perl / Johan Vromans 51

Attribute Accessor Methods

Writing all those get_attr and set_attr methods gets boring soon.

One thing to try is combine the set and get methods:

$obj->level(2);
$lvl = $obj->level;

sub level {
my $self = shift;
$self->{level} = shift if @_;
$self->{level};

}

Object Oriented Programming with Perl / Johan Vromans 52

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 21

Using Closures for Accessor Methods

For repetitive and otherwise boring tasks, use Perl.

foreach my $fld (qw(level text)) {
no strict ’refs’;
*{$fld} = sub {

my ($self) = shift;
$self->{$fld} = shift if @_;
$self->{$fld};

}
}

Object Oriented Programming with Perl / Johan Vromans 53

AUTOLOAD Accessor Methods

We can skip the definition of the accessor methods, and leave it to
AUTOLOAD to catch them.

sub AUTOLOAD {
my $self = shift;
croak "objects only, please" unless ref($self);
my $name = our $AUTOLOAD;
return if $name =˜ /::DESTROY$/;
if ($name =˜ /ˆHTML::Head::(.*)/ and

$1 eq "text" || $1 eq "level") {
$self->{$1} = shift if @_;
return $self->{$1};

}
croak "undefined method $name called";

}

Object Oriented Programming with Perl / Johan Vromans 54

Class Data and Methods

Classes can have data, too.

These can be stored nice privately in lexical variables.

To allow derived classes to use the data, accessor methods are
needed, just as with instance data.

These methods do not need to pay attention to their first argument,
since they do not relate to any particular instance.

Object Oriented Programming with Perl / Johan Vromans 55

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 22

Class Data and Methods (cont’d)

Assume, in our HTML::Head examples, that we want to keep track of
the number of allocated instances.

my $num_instances;

In the constructor:

$num_instances++;

Object Oriented Programming with Perl / Johan Vromans 56

Class Data and Methods (cont’d)

If we need the actual number of live instances, not just a tally, we
need a destructor method:

sub DESTROY {
$num_instances--;

}

Object Oriented Programming with Perl / Johan Vromans 57

Class Data and Methods (cont’d)

To access the class data from outside, or from a derived class, define
an accessor method:

sub instances {
shift; # ignore invocant
$num_instances;

}

No matter where and how invoked, this method will always return the
value of the lexical.

Usually this is exactly what is desired.

Object Oriented Programming with Perl / Johan Vromans 58

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 23

Privacy of Instance Data

Instance data in hashes and arrays is always vulnerable to unwanted
access.

Anyone having a reference can dereference it with
$obj->{priv_data}.

A common technique to obtain real private instance data is by storing
the data in a lexical hash, using the instance reference as the key.

Object Oriented Programming with Perl / Johan Vromans 59

Privacy of Instance Data (cont’d)

package Secure;
my %instance_data;

sub new {
...
my $self = bless {}, $class;
$instance_data{$self} = { attr => ... };
$self;

}

sub get_attr {
my $self = shift;
$instance_data{$self}{attr};

}

Object Oriented Programming with Perl / Johan Vromans 60

Using Separate Hashes

Using separate hashes for each attribute, typing errors can be caught.
It is slightly faster as well.

my %text;
my %level;

sub new {
...
my $self = bless {}, $class;
$text{$self} = undef;
$level{$self} = undef;
$self;

}

sub text {
my $self = shift;
@_ ? $text{$self} = shift : $text{$self};

}
sub level {

my $self = shift;
@_ ? $level{$self} = shift : $level{$self};

Object Oriented Programming with Perl / Johan Vromans 61

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 24

Using Separate Hashes

}

Object Oriented Programming with Perl / Johan Vromans 62

Singleton Classes

Singleton, monadic or highlander classes are special in that there is
always no more than one instance.

Often there is no instance at all – the class just provides methods for
the application to use.

If there’s a constructor, it re-uses a single referent, or it returns just the
class name.

Object Oriented Programming with Perl / Johan Vromans 63

Oops!

Aren’t we forgetting something?

Object Oriented Programming with Perl / Johan Vromans 64

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 25

Documentation

Any software system is essentially useless without proper
documentation.

This is particularly true for object based systems.

Every object based module should document:

• High level: how application programs should use it

• Medium level: how the module can be reused to form other
components.

• Low level: how the module can be maintained

If you want your module to be used, pay special attention to
documenting the high level API.

Object Oriented Programming with Perl / Johan Vromans 65

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 26

Object Oriented
Programming
with Perl

Part V

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 27

Overload

In the HTML examples, method publish produces an HTML string
representing the contents of an instance.

With overload, we can do this automatically when an object is
evaluated in string context.

use overload ’""’ => "publish";

Now, referencing an instance of HTML::Head in string context will
automatically call the publish method to produce the HTML string.

my $h1 = HTML::Head::->new(level=>1, text=>"A Title");
print STDOUT ("<html><body>\n",

"$h1\n",
"</body></html>\n");

Object Oriented Programming with Perl / Johan Vromans 67

Overload (cont’d)

Overloading of operators is also very convenient when the meaning
of operators can be extended to the objects.

For example, in the HTML::List example, concatenation could be
used to add another thing to the list:

{
package HTML::List::UnorderedList;
use overload "." => "add";
use overload ’""’ => "publish";

}

my $ul = HTML::List::UnorderedList::->new;
$ul->add("uitem1");
print STDOUT ($ul . "uitem2" . "uitem3", "\n");

Object Oriented Programming with Perl / Johan Vromans 68

Overload (cont’d)

Beware of unexpected results.

{
package HTML::List::UnorderedList;
use overload "." => "add";
use overload ’""’ => "publish";

}

my $ul = HTML::List::UnorderedList::->new;
$ul . "uitem1" . "uitem2" . "uitem3";
print STDOUT ("$ul\n");

Object Oriented Programming with Perl / Johan Vromans 69

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 28

Overload (cont’d)

So this is probably the best to do:

{
package HTML::List::UnorderedList;
use overload ".=" => "add";
use overload ’""’ => "publish";

}

my $ul = HTML::List::UnorderedList::->new;
$ul .= "uitem1";
$ul .= "uitem2";
$ul .= "uitem3";
print STDOUT ("$ul\n");

Object Oriented Programming with Perl / Johan Vromans 70

Class::Struct

The standard Class::Struct module can be used to quickly setup
classes.

package HTML::Head;

use Class::Struct;
struct (level => ’$’, text => ’$’);

sub publish {
my $self = shift;
"<h" . $self->level . ">" .

$self->text .
"</h" . $self->level . ">";

}

1;

Object Oriented Programming with Perl / Johan Vromans 71

Class::MethodMaker

Powerful module to construct classes.

Supports several class creation styles: hashes, hash from args, hash
with init.

Supports several attribute access styles.

Lots of fancy things like abstract methods, class attributes, attribute
groupings and delegation.

Available on CPAN.

Object Oriented Programming with Perl / Johan Vromans 72

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 29

Object Oriented
Programming
with Perl

Epilogue

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 30

The Books

Object Oriented Perl
Damian Conway
Manning, 1999
ISBN 1-884777-79-1

Programming Perl , 3rd ed.
Larry Wall, Tom Christiansen & Jon Orwant
O’Reilly & Associates, 2000
ISBN 0-596-00027-8

Object Oriented Programming with Perl / Johan Vromans 74

The Perl Docs

perlobj: Perl Objects
perlboot: Beginner’s Object Oriented Tutorial

Randal L. Schwartz
perltoot: Tom’s Object-Oriented Tutorial

Tom Christiansen
perltootc: Tom’s Object-Oriented Tutorial for Class Data

Tom Christiansen
perlbot: Bag’o Object Tricks

Object Oriented Programming with Perl / Johan Vromans 75

Squirrel Consultancy

© 2001 Squirrel Consultancy. All rights reserved. 31

